RBP database: the ENCODE eCLIP resource for RNA binding protein targets

Eric Van Nostrand elvannostrand@ucsd.edu Yeo Lab, UCSD 06/08/2016

Image adapted from Genome Research Limited

Each step of RNA processing is highly regulated

- RNA binding proteins (RBPs) act as trans factors to regulate RNA processing steps
- Estimated >1000 RBPs in human
- RNA processing plays critical roles in development and human physiology
- Mutation or alteration of RNA binding proteins plays critical roles in disease

Stephanie Huelga

ENCORE: ENCODE RNA regulation group

RBP Data Production Overview (Released data only as of 6/8/16)

1,303 Completed/Released Experiments

Outline

- eCLIP overview
 - Method outline
 - ENCODE submitted data structure
 - ENCODE eCLIP pipeline walkthrough
- What kinds of analyses can be done?
- Tools coming soon

Identification of RNA binding protein targets by eCLIP-seq

eCLIP computational pipeline

eCLIP computational pipeline

Contact Terms of Use Submitter sign-in

©2016 Stanford University

Search...

Q

Q

Data Type	7	Showing 18 of 18 results	
Experiment Biosample AntibodyLot Publication	7 4 2 2 + See more	RBFOX2 (Homo sapiens) External resources: ENSEMBL:ENSG00000100320 C HGNC:FOX2 C HGNC:RBM9 C GenelD:23543 C HGNC:HRNBP2 C HGNC:RTA C	Target 2 ☑ UniProtKB:O43251
		RBFOX2 eCLIP mock input (Homo sapiens) External resources: None submitted	Target
		RNA Bind-n-Seq Target: RBFOX2 Lab: Chris Burge, MIT Project: ENCODE	Experiment ENCSR441HLP released
		RBFOX2 (Homo sapiens) Source: GeneTex Product ID / Lot ID: GTX116327 / 40555	Antibody ENCAB507HJJ
		RBFOX2 (Homo sapiens) Source: Bethyl Labs Product ID / Lot ID: A300-864A / 2	Antibody ENCAB592TEY
		K562 (Homo sapiens, adult 53 year) Type: immortalized cell line Summary: Homo sapiens K562 immortalized cell line transient RNAi knockdown shRNA RNAi target: RBFOX2 Culture harvest date: 2015-03-05 Source: ATCC	Biosample ENCBS677KBE released

Clear Fil	Iters C Showing 2 of 2	? results		
Assay category		Download Visualize -		
RNA binding	2			
Assay				
RNA Bind-n-Seq	eCLIP of HepG	2		Experiment
SURINA RINA-Seg	Z Homo sapiens, ch	nild 15 vear		ENCSR799EKA
	- Target: RBFOX2	eCLIP mock input		released
Project	Lab. Cono Yoo, K	1000		
ENCODE	2 Project: ENCOD	E		
RFA				Experiment
ENCODE3	2 Home conjone of	z vild 15 voor		ENCODORZETE
Experiment status	Target: RBFOX2	ind is year		released
released	2 Lab. Cono Yoo, t	JOOD		
	Project: ENCOD	E		
Genome assembly (visualizatio	on)			
ngrø				
Organism				
Homo sapiens	2	Diocomple 1		Diocample 2
Target of assav		BIOSAILIPIE T		Biosample 2
RNA binding protein	1			
control	1			
Biosample type				
immortalized cell line	2			
Life stage	2		Cine	
Crinic	2	eCLIP	Size-	eCLIP
Pipeline		Replicate 1	matched	Replicate 2
			input	Replicate 2

RBFOX2

Q)

EXPERIMENTS / ECLIP / HOMO SAPIENS / HEPG2

Experiment summary for ENCSR987FTF

Status: released

Summary		Attribution		ENCODE PHASE 3
Assay:	eCLIP	Lab:	Gene Yeo, UCSD	
Target:	RBFOX2	Award PI:	Brenton Graveley, UConn	
Biosample summary:	HepG2 (Homo sapiens, child 15 year male)	Project:	ENCODE	
Biosample Type:	immortalized cell line	Aliases:	gene-yeo:204	
Replication type:	isogenic	Date released:	2015-07-15	
Description:	eCLIP experiment on HepG2 against RBFOX2			
Nucleic acid type:	RNA			
Size range:	175-300			
Lysis method:	see document			
Extraction method:	see document			
Fragmentation method:	see document			
Size selection method:	agarose gel extraction			
Platform:	HiSeq 2000			
Controls:	ENCSR799EKA			

Search...

Q)

Isogenic re	Isogenic replicates																					
Isogenic replic	ate	•	Technical	rep	olicate	\$	Sum	mary							Biosamp	le		¢	Antibody	\$	Library	\$
1			1				Homo sapiens HepG2 immortalized cell line ENCBS547JWV									ENCAB592TEY		ENCLB180GIG				
2			1				Hom	o sapien	s ⊦	lepG2 imm	orta	alized cell line)		ENCBS53	37A	DD		ENCAB592TEY		ENCLB696TLV	
File summary															Vis	sualiz	ze Data -					
Raw data files																						
Accession \$	File type \$	Biol repl	ogical icate	•	Library \$	Ru typ	in be	Read	\$	Lab	\$	Date added	File size \$	A	Audit \$	Fi st	le atus	¢				
ENCFF647KDW 📩	fastq	1			ENCLB180GIG	PE	50nt	R2		Gene Yeo, UCSD		2016-03-22	335 MB		×)	r	eleased			~		
ENCFF172GUS 📥	fastq	1			ENCLB180GIG	PE	50nt	R1		Gene Yeo, UCSD		2016-03-22	313 MB		×)	re	eleased		= R1 + R.	21	rastq files	
ENCFF2890FA 📥	fastq	2			ENCLB696TLV	PE	50nt	R2		Gene Yeo, UCSD		2016-03-22	338 MB		× .	re	eleased					
ENCFF591SSP 📥	fastq	2			ENCLB696TLV	PE	50nt	R1		Gene Yeo, UCSD		2016-03-22	315 MB		×	re	eleased					
Processed dat	a files																					
Accession \$	File type	¢	Output type	¢	Biological replicate	•	Mappin assemb	ig bly	\$	Lab	¢	Date added	File size ≑	A	Audit tatus 🗘	Fi st	le atus	¢				
ENCFF735HJV 🚣	bed narrowPe	eak	peaks		1		hg19			Gene Yeo,		2016-04-05	784 kB		#J	ir	n progress		Input-r	10	rmalized	
ENCFF475KXE 📥	bigBed narrowPeak		peaks		1		hg19			Gene Yeo, UCSD		2016-03-24	2.67 MB	0	× .	re	eleased		peaks			
ENCFF994WPX 📥	bam	2	alignments		1		hg19			Gene Yeo, UCSD		2016-03-23	365 MB	9	×	r	eleased					
ENCFF030USB 📩	bed narrowPe	eak	peaks	:	2		hg19			Gene Yeo, UCSD		2016-04-05	665 kB	1	a	ir	n progress					
ENCFF026CVE 📩	bigBed narrowPeak		peaks		2		hg19			Gene Yeo, UCSD		2016-03-24	2.7 MB	9	×)	re	eleased				I	
ENCFF154BQS 📩	bam	-			2	_	510			UCSD	_	0010 00 00	950 MD	•	-	-	lassad		Paired-	-eเ าฮ	NCI (STAR)	
																			mappi	ıВ		

eCLIP computational pipeline

eCLIP-seq Processing Pipeline

Programs Used & Version Information

(For all custom scripts: https://github.com/gpratt/gatk/releases/tag/2.3.1)

Yeo Lab Custom Script Versions:

Barcode_collapse_pe.py: https://github.com/Yeolab/gscripts/releases/tag/1.0 Make_bigwig_files.py: https://github.com/Yeolab/gscripts/releases/tag/1.0 Clipen+http://github.com/Yeolab/clipen+releases/tag/1.0 Clip.aalysis: https://github.com/Yeolab/gscripts/releases/tag/1.0 demus_paied_end.py: https://github.com/Yeolab/gscripts/releases/tag/1.0

Other programs used:

FastQC: v. 0.10.1 Cutadapt: v. 1.9.dev1 STAR: v. STAR_2.4.0i Samtools: v. 0.1.19-96b5f2294a bedToBigBed: v. 2.6 Bedtools: v. 2.25.0

Python and Python Package Versions:

Python 2.7.10 :: Anaconda 2.1.0 (64-bit) Pysam 0.8.3 Bit 0.5.0 HTSeq 0.6.1.p1 Numpy 1.9.3 Pandas 0.16.2 Pybestools 0.7.0 Sklearn 0.15.2 Solyo 0.16.0 Matpiolib 1.4.2 Gifunis 0.8.2 Seaborn 0.5.1 Statsmodels 0.5.0

eCLIP-seq Processing Pipeline v1.P 20151108 For ENCODE release Yeo Lab, UCSD - Contact geneyeo@ucsd.edu , gpratt@ucsd.edu , elvannostrand@ucsd.edu

Script Details

Our entire processing pipeline is performed by two commands: (1) Demultiplexing of fastq files based on inline barcodes, and (2) A scala command that procedurally performs all subsequent processing steps in order. See the next section for detailed description of processing steps performed by the scala pipeline.

Demultiplexing:

Script: demax_paired_end.py --fastq_1 <fastq_read_1> --fastq_2 <fastq_read_2> -b @barcode_file.txt> --out_file_1 <fastq_read_1_out> --out_file_2 <fastq_read_2_out> --length <randomer_length> -m

Input file Documentation: The input file is a tab separated file that describes the barcodes to demultiplex.

Column 1: Barcode to demultiplex Column 2: Human readable label to append to the demultiplexed file.

Example Manifest:

ACAAGTT /full/path/to/files/file_R1.C01

Pipeline:

Script: java = Amsilim = Xmsilim = jar /path/to/gatk/dist/Queue.jar =5 /path/to/qacripts/amlyze_clip_maq_encode.acala == input manifest.txt == harcoded /path/to/qacripts/amlyze_clip_maq_encode.acala AdaToOdAMIAGCATCHACHARCHACTOROCATCHACTOCTIONACONCTICOGANIC - adapter ACTACOCAANCOCAANCONCTICOTIONACONAANANTOT == adapter ACTACOCAANCOCAANCOCTICOTIONACONAANANTOT == adapter ACTACOCAANCOCAANCOCTICOTIONACONAANANTOT == adapter ANINONACAANANCOCTICOTIONACONAANANTOT == adapter ANINONACAANANCOCAANCOCTICOTIONACONAANANTOT == adapter ANINONACAANANCOCAANCOCTICOTIONACONAANANTOT == adapter ANINONACAANANCOCAANCOCTICOTIONACONAANANTOT == adapter

• Analysis SOP available at:

https://www.encodeproject.org/ documents/ dde0b669-0909-4f8b-946d-3cb9f35a6c52/ @@download/attachment/ eCLIP analysisSOP v1.P.pdf

Linked at bottom of each eCLIP experiment:

Pipeline protocol	General protocol
Description: eCLIP analysis protocol - November 9th, 2015	Description: eCLIP assay protocol.
LecLIP_analysisSOP_v1.P.pdf	CLIP_SOP_v1.0.pdf
ENCODE UNIVERSITY OF CALIFORNIA ODALTO ODULT Stanford	

Demultiplexing (already has been done for files on ENCODE DCC)

Demultiplexing:

Script:

```
demux_paired_end.py --fastq_1 <fastq_read_1> --fastq_2 <fastq_read_2> -b
<barcode_file.txt> --out_file_1 <fastq_read_1_out> --out_file_2
<fastq_read_2_out> --length <randomer_length> -m <metrics_file>
```

Input file Documentation:

The input file is a tab separated file that describes the barcodes to demultiplex.

Column 1: Barcode to demultiplex Column 2: Human readable label to append to the demultiplexed file.

Example Manifest:

ACAAGTT /full/path/to/files/file_R1.C01

File details: fastq files

- **@CCAAC** = random-mer (first 5 or 10nt of sequenced read2) has been removed from the 5' end of read2 and appended to read name
- Any in-line barcode has been removed (as part of demultiplexing)

DATASET.R1.fastq.gz:

DATASET.R2.fastq.gz:

Adaptor trimming:

Inline barcode description:

Each inline barcode is ligated to the 5' end of Read1 and its id and sequence are listed below:

- A01 ATTGCTTAGATCGGAAGAGCGTCGTGT
- B06 ACAAGCCAGATCGGAAGAGCGTCGTGT
- C01 AACTTGTAGATCGGAAGAGCGTCGTGT
- D08 AGGACCAAGATCGGAAGAGCGTCGTGT
- A03 ANNNNGGTCATAGATCGGAAGAGCGTCGTGT
- G07 ANNNNACAGGAAGATCGGAAGAGCGTCGTGT
- A04 ANNNNAAGCTGAGATCGGAAGAGCGTCGTGT
- F05 ANNNNGTATCCAGATCGGAAGAGCGTCGTGT
- RiL19/none AGATCGGAAGAGCGTCGTGT

Cutadapt round 1: Takes output from demultiplexed files. Run to trim off both 5' and 3' adapters on both reads

```
cutadapt -f fastq --match-read-wildcards --times 1 -e 0.1 -0 1 --
quality-cutoff 6 -m 18 -a NNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -g
CTTCCGATCTACAAGTT -g CTTCCGATCTTGGTCCT -A AACTTGTAGATCGGAA -A
AGGACCAAGATCGGA -A ACTTGTAGATCGGAA -A GGACCAAGATCGGAA -A CTTGT
AGATCGGAAG -A GACCAAGATCGGAAGA -A TGTAGATCGGAAGA -A CCAAGATCGGAAGA -A
TGTAGATCGGAAGAG -A CCAAGATCGGAAGAG -A GTAGATCGGAAGAGC -A CAAGATCGGAAGAGC
-A TAGATCGGAAGAGCG -A AAGATCGGAAGAGG -A GTAGATCGGAAGAGC -A CAAGATCGGAAGAGCG
-A TAGATCGGAAGAGCG -A ATCGGAAGAGCG -A AGATCGGAAGAGCGT -A
GATCGGAAGAGCGTC -A ATCGGAAGAGCGTCG -A TCGGAAGAGCGTCGT -A CGGAAGAGCGTCGTG
-A GGAAGAGCGTCGTGT -0
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.fastq.gz -p
/full/path/to/files/file_R2.C01.fastq.gz
/full/path/to/files/file_R2.C01.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz -b
/full/path/to/files/file_R1.C01.fastq.gz -b
```

Cutadapt round 2: Takes output from cutadapt round 1. Run to trim off the 3' adapters on read 2, to control for double ligation events.

```
cutadapt -f fastq --match-read-wildcards --times 1 -e 0.1 -0 5 --
quality-cutoff 6 -m 18 -A AACTTGTAGATCGGA -A AGGACCAAGATCGGA -A
ACTTGTAGATCGGAA -A GGACCAAGATCGGAA -A CTTGTAGATCGGAAG -A GACCAAGATCGGAAG
-A TTGTAGATCGGAAGA -A ACCAAGATCGGAAGAG -A TGTAGATCGGAAGAG -A
CCAAGATCGGAAGAG -A ACCAAGATCGGAAGAGC -A CAAGATCGGAAGAGG -A TAGATCGGAAGAGGC
-A AAGATCGGAAGAGG -A AGATCGGAAGAGCGT -A GATCGGAAGAGCGTC -A
ATCGGAAGAGCGTCG -A TCGGAAGAGCGTCGT -A CGGAAGAGCGTCGTG -A GGAAGAGCGTCGTG
-o /full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.fastq.gz
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.fastq.gz >
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.metrics
```

Adaptor trimming:

- Key consideration we've observed that adaptorconcatamer fragments (even at extremely low frequency) yield high-scoring eCLIP peaks
- Difficult to trim all with one pass
 - Cutadapt (by default) will miss adaptors with 5' truncations
- To avoid this, we err on the side of over-trimming

Repetitive element removal

- Majority of RNA in most cells are rRNA / tRNA / repeats
- These can map and cause strange artifacts (particularly rRNA, as a 40nt rRNA read with 1 or 2 sequencing errors can map uniquely to one of the various rRNA pseudogenes in the genome)
- To avoid false positives, we FIRST map all reads against a RepBase database, and only take reads that remain unmapped for further processing

STAR rmRep: Takes output from cutadapt round 2. Maps to human specific version of RepBase used to remove repetitive elements, helps control for spurious artifacts from rRNA (& other) repetitive reads.

```
STAR --runMode alignReads --runThreadN 16 --genomeDir
/path/to/RepBase_human_database_file --genomeLoad LoadAndRemove --
readFilesIn
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.fastq.gz
/full/path/to/files/file_R2.C01.fastq.gz.adapterTrim.round2.fastq.gz --
outSAMunmapped Within --outFilterMultimapNmax 30 --
outFilterMultimapScoreRange 1 --outFileNamePrefix
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rep.bam --
outSAMattributes All --readFilesCommand zcat --outStd BAM_Unsorted --
outSAMtype BAM_Unsorted --outFilterType BySJout --outReadsUnmapped
Fastx --outFilterScoreMin 10 --outSAMattrRGline ID:foo --alignEndsType
EndToEnd >
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rep.bam
```

Mapping to human genome

 We perform paired-end mapping with STAR to the human genome plus splice junction database, keeping only uniquely mapped reads

STAR genome mapping: Takes output from STAR rmRep. Maps unique reads to the human genome

```
STAR --runMode alignReads --runThreadN 16 --genomeDir
/path/to/STAR_database_file --genomeLoad LoadAndRemove --readFilesIn
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rep.bamUnmapp
ed.out.mate1
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rep.bamUnmapp
ed.out.mate2 --outSAMunmapped Within --outFilterMultimapNmax 1 --
outFilterMultimapScoreRange 1 --outFileNamePrefix
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rmRep.bam --
outSAMattributes All --outStd BAM_Unsorted --outSAMtype BAM Unsorted -
outFilterType BySJout --outReadsUnmapped Fastx --outFilterScoreMin 10
--outSAMattrRGline ID:foo --alignEndsType EndToEnd >
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rmRep.bam
```

PCR duplicate removal

- Next, we compare reads that map to the same location (based on the mapped start of R1 and start of R2) based on their random-mer sequence
 - If two reads map to the same position and have the same random-mer, one is discarded
- Input: bam file containing only uniquely mapped reads
- Output: bam file containing only "Usable" (uniquely mapped, non-PCR duplicate) reads

Barcode_collapse_pe: takes output from STAR genome mapping. Custom random-mer-aware script for PCR duplicate removal.

```
barcode_collapse_pe.py --bam
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rmRep.bam --
out_file
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rmRep.rmDup.b
am --metrics_file
/full/path/to/files/file_R1.C01.fastq.gz.adapterTrim.round2.rmRep.rmDup.m
etrics
```

eCLIP significantly decreases PCR duplication rate

File details: bam files

CCTTG = random-mer (first 5 or 10nt of sequenced read2) – has been removed from the 5' end of read2 and appended to read name

CCTTG: SN1001:449:HGTN3ADXX:1:1206:8464:69989 chr1 14771 255 43M 147 14681 -133 CACGCGGGCAAAGGCTCCTCCGGGCCCCTCACCAGCCCCAGGT B<FFFFB<0<<<IIFBF<07FFFBFIFFFBB<B<BBFFFB NH:i:1 HI:i:1 AS:i:80 nM:i:0 NM:i:0jM:B:c,-1 jI:B:i,-1 RG:Z:foo MD:Z:43 **CCCCT**: SN1001:449:HGTN3ADXX:2:2101:6568:79173 147 chr1 15206 255 44M 15204 -46 GCGGCGGTTTGAGGAGCCACCTCCCAGCCACCTCGGGGCCAGGG nM:i:2 FFFFIIIIIIIIIIIFFIIIIIIFFIIIIIFFFFFFF NH:i:1 HI:i:1 AS:i:76 MD:Z:5T38 jM:B:c,-1 jI:B:i,-1 RG:Z:foo NM:i:1

Peak calling

Step 1) Initial cluster identification with CLIPper

(spline-fitting with transcript-level background normalization)

Clipper: Takes results from samtools view. Calls peaks on those files.

clipper -b /full/path/to/files/CombinedID.merged.r2.bam -s hg19 -o /full/path/to/files/CombinedID.merged.r2.peaks.bed --bonferroni -superlocal --threshold-method binomial --save-pickle

Step 2) Compare clusters against size-matched input

perl overlap_peakfi_with_bam_PE.pl /full/path/to/desired_output_directory/CombinedID_rep1.merged.r2.bam /full/path/to/desired_output_directory/CombinedID_INPUT.merged.r2.bam /full/path/to/desired_output_directory/CombinedID_rep1.merged.r2.peaks.bed /full/path/to/manfest_file.txt.mapped_read_num /full/path/to/desired_output_directory/uID_Rep.basedon_uID_Rep.peaks.l2inputnor mnew.bed

Output file has bed format:

Chr \t start \t stop \t log10(p-value eCLIP vs SMInput) \t log2(fold-enrichment in eCLIP vs SMInput) \t strand

Step 3) Compress clusters (as CLIPper is transcript-level, it can occasionally call

overlapping peaks – this step iteratively removes overlapping peaks by keeping the one with greater enrichment above input) perl compress_l2foldenrpeakfi.pl

/full/path/to/desired_output_directory/uID_Rep.basedon_uID_Rep.peaks.l2inputnor mnew.bed

Writes output to bed format file (same columns as above):

/full/path/to/desired_output_directory/uID_Rep.basedon_uID_Rep.peaks.l2inputnor mnew.bed.compressed.bed

Why input normalize?

• We see mRNA background at nearly all abundant genes...

... but true signal is highly enriched above this background

Input normalization removes false-positives and identifies confident binding sites

File details: bed narrowPeak (input-normalized peaks)

chr \t start \t stop \t dataset_label \t 1000 \t strand \t log2(eCLIP fold-enrichment over size-matched input) \t -log10(eCLIP vs size-matched input p-value) \t -1 \t -1

- Note: p-value is calculated by Fisher's Exact test (minimum p-value 2.2x10⁻¹⁶), with chi-square test (-log10(p-value) set to 400 if p-value reported == 0)
- Our typical 'stringent' cutoffs: require -log10(p-value) ≥ 5 and log2(fold-enrichment) ≥ 3

track type=narrowPeak visibility=3 db=hg19 name="RBFOX2_HepG2_rep01" description="RBFOX2_HepG2_rep01
input-normalized peaks"

Chr7	1027402	1027481	RBFOX2_HepG2_rep01	1000 +	5.243129966	69.5293984	-1	-1
Chr7	99949578	99949652	RBFOX2_HepG2_rep01	1000 +	5.233511963	400	-1	-1
Chr7	4757099	4757219	RBFOX2_HepG2_rep01	1000 +	6.539331235	400	-1	-1

What can we do with the eCLIP database?

Individual RBP analyses

eCLIP analysis

3' UTR 1.00e-190 CDS 1.00e-148 All 0.00e+00 5' UTR 1.00e-3 UGCAUG **UGCAUG UGCAUG** UGC 1.00e-211 1.00e-54 1.00e-2 1.00e-45 GGGKAG <u>GGGGGGG</u> GGG GGGGGGG 1.00e-81 1.00e-27 1.00e-2 1.00e-37 RCCAAN CCACCC GCUVGA GGG 1.00e-62 1.00e-13 1.00e-19 1.00e-1 ACCACU GGCUAU CCCAAV GGU

२	Proximal Intron	
32	0.00e+00	
AUG	UGCAUG	
27	1.00e-63	
GAA	GGGAUC	
21	1.00e-55	
JUG	ACACAC	
19	1.00e-54	
CUG	UCGACU	

Distal

Intron

0.00e+00

1.00e-126

1.00e-106

UGCAUG

<u>GGGGGG</u>

CCCUUU

RBP localization

Integration with knockdown RNA-seq

An "RNA-centric" view of RBP-binding

'in silico screen' of a desired RNA against all CLIP datasets to identify the best-binding RBPs

Integrated global views of RBP binding

tSNE dimension 1

Tools available soon (next few months):

- eCLIP processing pipeline on DNA Nexus (should be ready ~July)
 - Followed quickly by IDR & q/c metrics for validating your own eCLIP datasets
- RNA-centric browser (website at alpha stage now)
 - Allow users to query RNAs or genomic regions of interest against our ENCODE eCLIP database
- Integration with ENCODE encyclopedia
- Factorbook-like summaries for each RBP

Acknowledgements

UC San Diego Gene Yeo

<u>Computational:</u> Gabriel Pratt Eric Van Nostrand Shashank Sathe Brian Yee Experimental: Eric Van Nostrand Steven Blue Thai Nguyen Chelsea Gelboin-Burkhart Ruth Wang Ines Rabano

Alumni: Balaji Sundararaman Keri Elkins Rebecca Stanton

Brent Graveley Chris Burge Eric Lécuyer Xiang-Dong Fu

National Human Genome Research Institute Advancing human health through genomics research

Funding:

