Genetic regulation of gene expression variation

Barbara E. Stranger
Section of Genetic Medicine
Institute for Genomics and Systems Biology
Center for Data Intensive Science

ENCODE Users group meeting, Stanford University 6/8/2016
(GSB) Institute for Genomics \& Systems Biology

Center for
Data Intensive Science

Outline

- The Immunological Variation (ImmVar) Project - Baseline eQTLs in adaptive and innate immunity
- Context specificity
- Role in disease
- Activation eQTLs

Outline

- The Immunological Variation (ImmVar) Project - Baseline eQTLs in adaptive and innate immunity
- Context specificity
- Role in disease
- Activation eQTLs

The Immunological Variation Project (ImmVar)

Goal: Understand how genetic variability translates into gene expression variability in adaptive and innate immunity and contributes to higher order phenotypes

ImmVar Study Design

cis-eQTL analysis (baseline)

Significance assessed by 10,000 permutations per gene: Nominal $p<0.01$ tail of the minimal permutation p-value

Model: residual gene expression profile (control for age, sex, PCgt, PCge)

$$
+
$$

Genotyped and imputed SNPs
Cis-regulatory effect on IRF1

1) Analysis performed separately for each cell-type and population
2) Multi-ethnic Meta-analysis for each cell type

Detected eGenes

Population	Monocyte		CD4 ${ }^{+}$T cell		Shared No. of genes
	No. of participants	No. of genes	No. of participants	No. of genes	
European American	211	3090	213	2352	1178
African American	112	1318	112	722	259
East Asian	78	1181	82	592	215
\geq Two populations	N/A	1352	N/A	739	328
Three populations	401	537	407	255	102
Nonredundant	401	3703	407	2672	1372
Meta-analysis	401	6210	407	4975	2789

Baseline eQTLs in CD4+ T and CD14+16$30 \%$ of tested genes have cis-eQTL associations

Up to 17% of genes with a cis-eQTL, have >= 2 independent signals

Outline

- The Immunological Variation (ImmVar) Project - Baseline eQTLs in adaptive and innate immunity
- Context specificity
- Role in disease
- Activation eQTLs

Population specificity of cis-eQTLs?

For shared-population eQTLs: Fold change across populations highly correlated; Pearson's r: 0.85-0.95

Little population-specificity of presence/absence or fold-change modulation

BUT those differences might be highly relevant for population-diverged phenotypes

Population specific cis-regulatory effects

TARSL2: threonyl-tRNA synthetase-like 2

~40\% cis-eQTLs are cell-type specific

For eQTLs shared across cell types: Fold change across cell types less highly correlated;
r: 0.49-0.64

Evidence for cell - type specificity in presence/absence AND fold change

CD52 cis-eQTL shows directional regulatory effects across cell types

CD52 lymphocyte cell-surface glycoprotein, function in anti-adhesion, role in lymphoma. It is the protein targeted by alemtuzumab, a monoclonal antibody used for the treatment of chronic lymphocytic leukemia

Sex-differentiated eQTLs

- Autosomal genetic variation contributes to sexual dimorphism (Ober et al. 2008; Heid et al. 2010)
- Sex-specific eQTLs have been detected in mice (Yang et al. 2006) and humans (Dimas et al. 2012, Kent et al. 2012, Yao et al. 2014, Kukurba et al. 2015)

X\% of cis-eQTLs exhibit sex-bias

Male
CLL risk locus. chronic lymphocytic leukemia:
Male risk is 2 X female risk
(Slager et al. 2012)

Female

BAK1: BCL2-Antagonist/Killer 1; role in apoptosis, interacts with the tumor suppressor P53 after exposure to cell stress

Outline

- The Immunological Variation (ImmVar) Project
- Baseline eQTLs in adaptive and innate immunity
- Context specificity
- Role in disease
- Activation eQTLs

GWAS-associated SNPs are more likely to be eQTLs

eQTL Distribution: $P<10^{-4}$

eQTL Distribution: $P<10^{-6}$

eQTL Distribution: $\mathrm{P}<10^{-8}$

Number of eQTLs
rcil

Figure 1. Trait-associated SNPs are more likely to be eQTLs. The distribution of the number of eQTLs (defined as $p<10^{-4}$ left panel, $p<10^{-6}$ middle panel, and $p<10^{-8}$ right panel) observed for each of 1,000 draws of 1,598 SNPs from bins matched for minor allele frequency to the 1,598 SNPs downloaded from the NHGRI catalog (bins include all SNPs in the llumina 1 M and Affymetrix 6.0 products) is shown in the bar graphs, with the actual number of eQTLs observed in the 1,598 SNPs from the NHGRI catalog shown as a solid circle. doi:10.1371/journal.pgen.1000888.g001

GWAS: Where is the causal disease variant and what does it do?

a)

b)

Disease

Common disease variants are cis-eQTLs in ImmVar data

Traits	\# SNPs	Monocytes	T-cells	Shared
GWAS Curated (LD-pruned)	1,068	94	53	29
Cancers	121	7	3	1
Neurodegenerative diseases	55	19	0	1
Neuropsychiatric	27	3	4	3
Metabolic diseases	161	13	2	7
Height	180	12	5	1

Autoimmune disease associated SNPs

Disease	\# of GWAS SNPs	$\begin{gathered} \text { \# of SNP- } \\ \text { gene(s) } \\ \text { (eQTL) } \\ \hline \end{gathered}$	$\begin{gathered} \text { \# of GWAS } \\ \text { SNPs } \\ \text { (eQTL) } \end{gathered}$	\# of Genes (eQTL)
Ankylosing spondylitis (AS)	16	17	10	14
Crohn's disease (CD)	90	54	29	52
Ulcerative colitis (UC)	58	34	19	34
Celiac disease (CeD)	80	15	13	13
Multiple sclerosis (MS)	83	22	20	22
Type 1 diabetes (T1D)	53	30	17	29
Rheumatoid arthritis (RA)	70	22	17	22
Primary biliary cirrhosis (PBC)	19	5	5	5
Systemic lupus erythematosus (SLE)	27	12	7	12
Systemic sclerosis (SS)	18	5	4	5
Psoriasis (PS)	54	25	15	22
Total	568	241	156	230
Total (LD-pruned, top SNP per LD-block, n.r.)	425		143	164

[^0]Regulatory Trait Concordance, RTC score > 0.9 (Nica et al 2010):
T-cells 106 genes, monocytes 123 genes

Polarization in the regulatory effects of neurodegenerative and inflammatory disease variants

Traits
Cell-specificity (random vs observed)

Monocytes \quad Shared T-Cells

Monocyte-specific cis-eQTL for CD33 associated with Alzheimer's Disease

Previous studies report over-expression of CD33 on cell surface of microglia in postmortem brains of lateonset AD patients. CD33 expression level correlated with beta-amyloid protein and plaque accumulation.

Exploring eQTLs in the relevant cell type is important for disease association studies

SNP genomic coordinate

SNP genomic coordinate
relevant cell type for disease

Importance of cataloguing regulatory variation in multiple cell types

Outline

- The Immunological Variation (ImmVar) Project - Baseline eQTLs in adaptive and innate immunity
- Context specificity
- Role in disease
- Activation eQTLs

Cell stimulation motivation

- Immune cells respond to different stimuli through different circuits (Amit et al. 2009, Science, Gat-Viks et al. 2013 Nat Biotech)
- Do healthy individuals vary in their immune response?
- Is there a genetic basis to this response?
- Does the variation in immune response relate to clinical disease?
- Can we leverage naturally occurring variation to reconstruct regulatory relationships?

Immune cell activation

Innate Immunity
Dendritic cells (DCs)

Adaptive Immunity
T-cells

- Lipopolysaccharide (LPS)
- bacteria
- Influenza
- Virus
- Interferon-beta (IFN- β)
- Virus
- $\alpha-C D 3, \alpha-C D 28$
- $\alpha-C D 3, \alpha-C D 28$, IFN $-\beta$
- α-CD3, $\alpha-C D 28$, TGF- β
- Th 17

Study pipeline

Step I: PBMC collection ($\mathrm{n}=560$ individuals) \&
high-throughput assay development

Step III: Nanostring study
1598 samples
Baseline
LPS 5 hour
FLU 10 hour
IFN 36.5 hour

${ }^{\sim} 1300$ samples
Baseline $\alpha-C D 3, \alpha-C D 284 h$
$\alpha-C D 3, \alpha-C D 28$, IFN $\beta 4 h$ $\alpha-C D 3, \alpha-C D 2848 h$
$\alpha-C D 3, \alpha-C D 28$, Th17-P 48h
Step IV: eQTL association study

Step V: Functional fine-mapping

Immune pathways activated by stimuli

Different categories of cis-eQTLs inform mechanism

1- Common to ALL conditions ($\mathrm{n} \approx 67$)

3- Specific to LPS/FLU stimulation ($\mathbf{n} \approx 21$)

2- Specific to FLU stimulation ($\mathrm{n} \approx 11$)

4- Specific to LPS/FLU/IFN β stimulation ($n \approx 40$)

cis-response QTLs (cis-reQTLs): 121 genes

IFNA21 (rs10964871)

7: FLU only

15: LPS + FLU

ARL5B (rs11015435)

T Baseline	
$\stackrel{5}{5} 10$	0
言99 0.00	
- ${ }_{\text {O }}^{0} 8$	
$\stackrel{\text { ¢ }}{ } 7$	

57: ALL

cis-reQTLs that alter sequence of TF binding sequences

Enrichment of known binding sites for TFs from the STAT family (ENCODE ChIP-Seq)
STAT2: 116-fold, $\mathrm{p}<2.55 \times 10-21$
STAT1: 126 -fold, $\mathrm{p}<2.98 \times 10-13$

Validation

Autoimmune and Infectious disease SNPs from GWAS

orange: cis-reQTLs, yellow: stimulus-specific cis-eQTLs

Summary

- Reference of genetic basis of transcriptome variation in innate and adaptive immune cells of a healthy multi-ethnic cohort
- Characterization of context specificity of eQTLs (population, cell-type, sex, activation state) with real implications for medical phenotypes, foremost in elucidating disease mechanisms.
- Population 'specific' signals are largely explained by allele frequency differences across populations, little effect size differences.
- Approximately 60% of cis-eQTLs are shared across adaptive and innate immune cell types, though effect sizes vary.
- Inflammatory disease alleles over-represented in T-cell regulatory effects, whereas neurodegenerative disease alleles are enriched in monocyte effects.
- Genetic effects on response to immune cell activation

Acknowledgements

Christophe Benoist
Katherine Rothamel
Ting Feng
Michael Wilson
Natasha Asinovski
Scott Davis
Diane Mathis
Phillip De Jager
Michelle Lee
Cristin McCabe
Selina Imboywa
Avery Davis
Manik Kuchroo
Alina Von Korff
Nikos Patsopoulos
Irene Frohlich
Stranger lab is
recruiting postdocs!!

Nir Hacohen and Aviv Regev
Chun (Jimmie) Ye
Mark Lee
Chloe Villani
Weibo Li
Daphne Koller
Sara Mostafavi
David Haffler
Soumya Raychaudhuri
Barbara Stranger
Towfique Raj*
Joseph Replogle
Eric Gamazon
Patrick Evans
Meritxell Oliva
Charles Czysz
Daisy Castillo
Katya Khramtsova
Nancy Cox
Dan Nicolae

Condition specific cis-eQTLs in DCs

LPS Results

Flu Results

IFNb Results

[^0]: n.r: Non-redundant

