Comprehensive functional testing of ChIP-seq binding sites with ChIPreporter assays

Tim Reddy Duke University ENCODE Users Meeting June 9, 2016 ChIP-seq has revealed tens of thousands of TF binding sites in the human genome, far in excess of the regulated genes.

A549 cells (lung epithelial cell line), 3 h, 100 nM Dexamethasone

Major question post ChIP-seq: What are all of these TF binding sites doing?

A549 cells (lung epithelial cell line), 3 h, 100 nM Dexamethasone

Our model system: Cortisol

(glucocorticoid steroid hormone)

Suppresses immune system and reduces inflammation

Increases blood pressure and blood sugar

Synthetic GC's used clinically to treat Psoriasis, Crohn's Disease, Rheumatoid Arthritis

Major component of response to stress response and metabolism

Our model system: Cortisol (glucocorticoid steroid hormone)

Suppresses immune system and reduces inflammation

Increases blood pressure and blood sugar

Synthetic GC's used clinically to treat Psoriasis, Crohn's Disease, Rheumatoid Arthritis

Major component of response to stress response and metabolism

The Glucocorticoid Receptor (GR)

GR binds >10,000 sites in the human genome and regulates hundreds of genes.

A549 cells (lung epithelial cell line), 3 h, 100 nM Dexamethasone

Reporter assays to quantify the activity of GC response elements

DEX = Dexamethasone, a synthetic glucocorticoid

Using high-throughput sequencing to make reporter assays high throughput

Patwardhan et al, 2012, Sharon et al, 2012, Kheradapour, 2013, Kwasnieski et al, 2012 and 2014, Melnikov et al, 2012 and 2013,

Regulatory elements located in the 3' UTR of the reporter gene.

From that position, the elements regulate their own expression.

High-throughput sequencing of the cloning site in the expressed reporter gene can then be used to quantify regulatory element activity

- Can assay millions of fragments at once
- Elements can be hundreds to thousands of bp
- Allows direct ligation of captured DNA into highthroughput reporter assays

Chromatin Immunoprecipitation + STARR-seq to quantify the activity of all TF binding sites

Chromatin Immunoprecipitation + STARR-seq to quantify the activity of all TF binding sites

GR ChIP-reporter results

- Assayed >12,000 GR binding sites
- 10% were DEX-responsive
- 95% of regulatory elements increased reporter expression
- Validated with standard dual-luciferase (r = 0.77)

Possible interpretations:

- **One possibility:** Only 10% of the GR binding sites have activity.
- **Alternative:** Other GR binding sites require additional genomic context.

Some ways that GR binds the genome

Direct binding to a Glucocorticoid Response Element (GRE)

Cooperative binding to a composite regulatory element

Tethered binding via other TFs such as AP-1

Presence of a GRE explains the response Co-binding TF motifs do not

DEX-responsive sites also have epigenetic state changes that reflect activity in the genome

Direct binding explains DEXresponsive reporter activity

Direct binding to a Glucocorticoid Response Element (GRE)

Cooperative binding to a composite regulatory element

Tethered binding via other TFs such as AP-1

The problem

- The set of GC-responsive genes varies dramatically between cell types
- Those differences can largely be attributed to changes in co-factors, particularly AP-1

(e.g. Biddie et al, 2011; John et al, 2011; Gertz et al, 2013)

• If GR binding at AP-1 sites does not have activity, then we struggle to explain cell-type-specific differences in GC-responses

Our model

• AP-1 sites modulate the activity of direct GR binding sites in the genome

• However, the AP-1 sites are not sufficient for DEX-responsive regulatory activity

• In this model, we expect GR and AP-1 to cocluster in the genome

GR binds the genome in clusters

More numerous clusters have a smaller fraction of DEXresponsive sites

(i.e. few direct sites can nucleate large clusters)

AP-1 sites, represented by JunD, that gain GR are closer to direct GR binding sites

Clusters of GR binding are depleted for intervening CTCF

Conclusion

 GR biding at non-responsive site likely reflects looping interactions with distal direct GR binding sites

 Does this alter DEX-responsive regulatory activity, potentially explaining cell-type specificity?

Adding AP-1 sites amplifies GCresponse by >10-fold

That amplification is distant dependent

Summary of our model: GR binding clusters reflect extensive GR:AP-1 tethering interactions.

Summary

 We developed a high-throughput approach to measure the activity of every GR binding site in a reporter assay

 The results reveal a functional diversity of GR binding sites, and suggest that interactions between direct and tethered GR binding sites are the basis for cell-type specific GC responses

Ongoing work: Genomics of Gene Regulation

Expanding upon these findings with extensive and coordinated ChIPseq, DNase-seq, RNA-seq, STARR-seq, Hi-C

Matched with Bayesian models of regulatory networks, and epigenome and genome editing to test predictions

RNA-seq and DNase-seq released via ENCODE DCC

- 12 time points, coordinated to the second
- At least four replicates of each time point
- ChIP-seq / Hi-C / STARR-seq data forthcoming

Assav category	
DNA binding	5566
Transcription	2770
DNA accessibility	856
DNA methylation	680
RNA binding	490
	+ See more
Assay	
ChIP-seq	5566
DNase-seq	807
polyA mRNA RNA-seq	705
RNA-seq	503
shRNA RNA-seq	445
	+ See more
Project	
ENCODE	6451
Roadmap	3127
modENCODE	883
modERN	198
GGR	24

Showing 25 of 10683 results Image: Constraint of the second state of the second s	
ChIP-seq of HepG2 Homo sapiens, child 15 year Target: Control	Experiment ENCSR195ZCD released
Lab: Michael Snyder, Stanford Project: ENCODE Hi-C of SK-N-DZ	Experiment
Homo sapiens, child 2 year Lab: Job Dekker, UMass Project: ENCODE	ENCSR105KFX released
ChIP-seq of esophagogastric junction Homo sapiens, adult 51 year Target: Control Lab: Michael Snyder, Stanford Project: ENCODE	Experiment ENCSR211EXK released

Looking for postdocs to join the lab

 Looking for both experimental and computational scientists

 Genomics and Genetics projects featuring high-throughput reporter assays, genome and epigenome editing, network modeling, experimental design, and specific disease studies.

Acknowledgements

Chris Vockley (Looking for a postdoc) **Anthony D'Ippolito**

Bill Majoros Ian McDowell

Reddy Lab:

Karl Guo, Ph.D.

Graham Johnson Linda Hong Sarah Leichter Luke Bartelt

Gersbach Lab:

Charlie Gersbach Tyler Klann Josh Black Isaac Hilton Dewran Kocak Pratiksha Thakore **Princeton** Ami Kabadi Lauren Polstein

Northwestern

Bill Lowe **Geoff Hayes Denise Scholtens** Brian Layden Anton Ludvik Michael Nodzenski

Duke:

Greg Crawford **Greg Wray** Alex Hartemink Brigid Hogan

Penn

Funding:

National Human Genome Research

U01 HG007900 (Reddy)

DIABETES AND DIGESTIVE AND KIDNEY DISEASES R01 DK097534 (Lowe) R01 DK099820 (Lowe)

NIAMS R01 DA036865 (Gersbach)

Predoctoral Fellowships

F31 HD085666 (Guo)

F31 HL129743 (Vockley)

Barbara Engelhardt Casey Brown