

Tools for analyzing cancer variation

Ekta Khurana, PhD

Assistant Professor Meyer Cancer Center Englander Institute for Precision Medicine Institute for Computational Biomedicine Department of Physiology and Biophysics Weill Cornell Medicine, New York, NY

ekk2003@med.cornell.edu

International Cancer Genome Consortium & The Cancer Genome Atlas

~3000 WGS (tumor & normal), ~1600 RNA-Seq, ~1500 methylation

PCAWG PanCancer Analysis

Most variants are in noncoding regions

MB: medulloblastoma DLBC: B cell lymphoma STAD: gastric BRCA: breast PAAD: pancreatic PRAD: prostate LIHC: liver PA: pilocytic Astrocytoma LUAD: Lung adenocarcinoma

Khurana et al, *Nature Rev Genet*, 2016

Modes of action of noncoding variants: transcription factor binding disruption

MYB motif created & drives TAL1 overexpression in T-ALL (Mansour et al, *Science*, 2014)

TERT promoter mutated in many different cancer types

Tumor type*	No. tumors	No. tumors mutated (%)
Dysembryoplastic neuroepithelial tumor	3	1 (33.3)
Endometrial cancer	19	2 (10.5)
Ependymoma	36	1 (2.7)
Fibrosarcoma	3	1 (33.3)
Glioma [†]	223	114 (51.1)
Hepatocellular carcinoma	61	27 (44.2)
Medulloblastoma	91	19 (20.8)
Myxofibrosarcoma	10	1 (10.0)
Myxoid liposarcoma	24	19 (79.1)
Neuroblastoma	22	2 (9)
Osteosarcoma	23	1 (4.3)
Ovarian, clear cell carcinoma	12	2 (16.6)
Ovarian, low grade serous	8	1 (12.5)
Solitary fibrous tumor (SFT)	10	2 (20.0)
Squamous cell carcinoma of head and neck	70	12 (17.1)
Squamous cell carcinoma of the cervix	22	1 (4.5)
Squamous cell carcinoma of the skin	5	1 (20)
Urothelial carcinoma of bladder	21	14 (66.6)
Urothelial carcinoma of upper urinary epithelium	19	9 (47.3)

Killela et al, *PNAS*, 2013 Horn et al, *Science*, 2013 Huang et al, *Science*, 2013

Co-variates of mutation rates: Increased mutation density at TF binding sites in melanoma and lung cancer

Perera et al, *Nature*, 2016 Sabarinathan et al, *Nature*, 2016 Khurana, *Nature News & Views*, 2016

Outline

- Variants with high functional impact: FunSeq
- Driver elements w/ more recurrent & high functional impact mutations than expected randomly: CompositeDriver

Identifying noncoding variants associated with cancer

Khurana et al, Nature Rev Genet, 2016

Identifying noncoding variants associated with cancer

Khurana et al, Nature Rev Genet, 2016

Evolutionary conservation

- Typically defined by comparison across species

Conservation among humans

- Depletion of common variants/Enrichment of rare variants

Common variant

Rare variants

Fraction of rare variants = (Num of rare variants/ Total num of variants)

Enrichment of rare SNPs as a metric for negative selection

 Depletion of common polymorphisms in regions under selection Negative selection restricts the allele

frequency of deleterious mutations.

- Results for coding genes consistent with known phenotypic impacts
- Other metrics for selection
 - Evolutionary conservation (e.g. GERP)
 - SNP density (confounded by mutation rate)

LOF-tol (Loss-of-function tolerant): least negative selection Cancer: most selection

Khurana et al., Science, 2013

Organism-level negative selection in noncoding elements

Khurana et al., Science, 2013

Negative selection and tissue-specificity of coding and noncoding regions

Ubiquitously expressed genes and bound regions show stronger selection

❑ Differences in constraints amongst tissues

Constraints in coding genes and regulatory genes are correlated across tissues

Which noncoding categories are under very strong "coding-like" selection ?

Human regulatory network from ENCODE ChIP-Seq

Using correlation with expression data

Gerstein[¶].....Khurana[¶]...., *Nature*, 2012 ([¶] co-first authors) Yip et al, *Genome Res*, 2012

Gene essentiality and human regulatory network

Identification of noncoding mutations with high impact: FunSeq

FunSeq2: weighted scoring scheme

- Feature weight
 - Weighted with mutation patterns in natural polymorphisms (features frequently observed weighed less)

Feature weight: $w_d = 1 + p_d \log_2 p_d + (1 - p_d) \log_2 (1 - p_d)$

 $p \uparrow w_d$ *p* = probability of the feature overlapping natural polymorphisms

For a variant: Score =
$$\sum w_d$$
 of observed features

https://github.com/khuranalab/FunSeq PCAWG http://funseq2.gersteinlab.org

Fu et al., Genome Biology, 2014 18 Identifying noncoding variants associated with cancer

CompositeDriver

CompositeDriver for detecting driver coding & noncoding elements

(C) Within each functional region, composite functional score (CFSr) is sum of recurrence multiplied by FunSeq2 score in each position with alteration.

$$CFS_r = \sum_{i=0}^n W_i \times FS_i$$

r = region (cds, promoter, enhancer and lincRNA)
n = number of variants in r
W_i = number of samples with variant i

(D) P-value for each region is produced from permutation test and Benjamini and Hochberg method to correct multiple hypothesis testing.

Results from 40 lung adenocarcinoma samples

Results from 188 prostate cancer samples

Data from ICGC, Baca et al Cell 2013, Berger et al Nature 2011

Functional validation of candidates in prostate cancer

WDR74 promoter

Sanger sequencing in 19 additional samples confirms the recurrence

WDR74 shows increased expression in tumor samples
PCa

RET promoter Increased activity

EIF4EBP3 promoter Reduced activity

Acknowledgements

Yale

Yao Fu (now at Bina), Xinmeng Mu (now at

Broad), Jieming Chen, Lucas Lochovsky, Arif Harmanci, Alexej Abyzov, Suganthi Balasubramanian, Cristina Sisu, Declan Clarke, Mike Wilson, Yong Kong, <u>Mark</u> <u>Gerstein</u>

Sanger

Vincenza Colonna, Yuan Chen, Yali Xue, Chris Tyler-Smith

Cornell

Steven Lipkin, Jishnu Das, Robert Fragoza, Xiaomu Wei, Haiyuan Yu

Andrea Sboner, Dimple Chakravarty, Naoki Kitabayashi, Vaja Liluashvili, Zeynep H. Gümüş, Kellie Cotter, Mark A. Rubin

~40 Institutes ~550 participants

Functional Interpretation Group

~50 participants

U of Michigan

Hyun Min Kang **U of Geneva**

Tuuli Lappalainen (NYGC), Emmanouil

T. Dermitzakis

Baylor

Daniel Challis, Uday Evani, Donna Muzny, Fuli Yu, Richard Gibbs **EBI**

Kathryn Beal, Laura Clarke, Fiona Cunningham, Paul Flicek, Javier Herrero, Graham R. S. Ritchie

Boston College

Erik Garrison, Gabor Marth Mass Gen Hospital Kasper Lage, Daniel G. MacArthur, Tune H. Pers **Rutgers** Jeffrey A. Rosenfeld Khurana lab <u>Eric Minwei Liu</u> <u>Priyanka Dhingra</u> Alexander Fundichely Tawny Cuykendall

Weill Cornell Medicine

Sandra and Edward Meyer Cancer Center

Englander Institute for Precision Medicine

Institute for Computational Biomedicine

Andrea Sboner

Mark Rubin Dimple Chakravarty Kellie Cotter

Steve Lipkin Chason Lee

