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Hypothesis 1: Non-coding variants alter transcription 
factor sequence motifs.
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Approach: Map variants to correct pathways by 
predicting enhancers and their target genes. Score 
variants for changes in binding affinity.

Hypothesis 1: Non-coding variants alter transcription 
factor sequence motifs.
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MotifDiverge quantifies loss/gain  
of TF binding sites

Ritter et al. (2010) 
Kostka et al. (2015)

P-value for net 
change in binding  
• One or many TFs 
• Alignment-free 
• Evolutionary model 
• Motif specific

Statistical	model	for	TFBS	evolution	with	turnover	 Predicts	change	of	function

Detects loss/gain of function 
mutations with high accuracy 
• Better than conservation scores 
• In vivo and MPRAs in cell lines
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TargetFinder maps distal regulatory 
elements to genes

!
Whalen et al. (2016)

Func1onal	Genomics

Training	Data	
Ac1ve	enhancers	
Expressed	genes	
Hi-C	interac1ons	

Closest	gene	usually	wrong Reveals	distinct	genomic	
signature	of	looping	DNA

• Heterochromatin on loop  
• Cohesin within 6Kb of 

enhancer and promoter 
but not mid-loop 

• TFs bound with CTCF 
improve predictions



Brain	(96)Limb	(41)

Heart	(28)

239	Predicted	HAR	Enhancers

• Machine-learning on biologically validated 
enhancers identifies non-coding variants most likely 
to affect gene regulation and the targeted genes. 

- Massive integration of functional genomics data 
enables cell type specific predictions 
- Many enhancer-like regions are minimally active 
and not consistently looping to a target gene 
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Summary and Challenges
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Reveals	distinct	genomic	
signature	of	looping	DNA

• Heterochromatin on loop  
• Cohesin within 6Kb of 

enhancer and promoter 
but not mid-loop 

• TFs bound with cohesin 
improve predictions

Hypothesis 2: Non-coding variants 
alter binding sites of structural 
proteins and chromatin modifiers.
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Whalen et al. (2016)

Reveals	distinct	genomic	
signature	of	looping	DNA

• Heterochromatin on loop  
• Cohesin within 6Kb of 

enhancer and promoter 
but not mid-loop 

• TFs bound with cohesin 
improve predictions

Hypothesis 2: Non-coding variants 
alter binding sites of structural 
proteins and chromatin modifiers.

Approach: CRISPR edit sites 
identified by TargetFinder, then 
test chromatin and expression.
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For a typical ENCODE TF 23% of the top 2000 ChIP-
seq peaks have no sequence motif (range = 1%-63%) 



Many enhancer mutations are outside 
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Hypothesis 3: Non-coding variants alter enhancer 
function by changing DNA shape.



• TFs can recognize shape in addition to sequence.  
• DNA shape differentiates similar sequence motifs. 
• Distinct sequences can encode same shape.
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• TFs can recognize shape in addition to sequence.  
• DNA shape differentiates similar sequence motifs. 
• Distinct sequences can encode same shape.

Many enhancer mutations are outside 
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Approach: Algorithm to learn shape motifs de novo 
for all ENCODE TFs, predict shape motif hits in ChIP-
seq peaks, compare to sequence motifs 

Hypothesis 3: Non-coding variants alter enhancer 
function by changing DNA shape.



1. Estimate DNA structure: DNAshape (Zhou et al. 2013) 
• Maps 5-mer sequences to structural features. 
• Based on molecular dynamics simulations.  

De novo shape motif discovery

[Figures	from	Blackburn	and	Gait,	1996]	

MGW ProT Roll HelT
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1. Estimate DNA structure: DNAshape (Zhou et al. 2013) 
• Maps 5-mer sequences to structural features 
• Based on molecular dynamics simulations  

2. Learn TF shape motifs: Search ChIP-seq peaks for 
windows with similar values of a shape feature. 
• Gibbs sampling with scores ~ exp(∑ Dij) 
• Vary window size 5-25bp 
• Train on 1000 of top 2000 peaks for ~250 TFs 

3. Call hits: Scan ChIP-seq peaks with shape motifs. 
• Null distribution on distance from mean shape 

feature value at each position 
• Apply to remaining 1000 of top 2000 peaks and 

flanking non-peak regions for each TF 
4. Enrichment test: Hypergeometric p-value.

De novo shape motif discovery



Shape motifs are common
Percentage TFs with a motif for each feature in each cell line
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• Most peaks without sequence motifs have at least 
one shape motif. It is typically at the peak center. 
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Nrsf Roll motif in K562

Shape complements sequence motifs

Nrsf FactorBook sequence motif

Underlying sequence logo



Shape motifs are complementary
• Most peaks without sequence motifs have at least 
one shape motif. It is typically at the peak center. 
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Shape motifs are complementary
• Most peaks without sequence motifs have at least 
one shape motif. It is typically at the peak center. 
• Many peaks have sequence and shape motifs. 

- These can be similar, 
- Extensions or refinements of one another, 
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Shape motifs are complementary
• Most peaks without sequence motifs have at least 
one shape motif. It is typically at the peak center. 
• Many peaks have sequence and shape motifs. 

- These can be similar, 
- Extensions or refinements of one another, 
- Or very different  

• Shape motifs can flank sequence motifs 

Nfya HelT motif in K562
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Shape motifs are complementary
• Most peaks without sequence motifs have at least 
one shape motif. It is typically at the peak center. 
• Many peaks have sequence and shape motifs. 

- These can be similar, 
- Extensions or refinements of one another, 
- Or very different  

• Shape motifs can flank sequence motifs 

Cfos Roll motif in K562
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• Most peaks without sequence motifs have at least 
one shape motif. It is typically at the peak center. 
• Many peaks have sequence and shape motifs. 

- These can be similar, 
- Extensions or refinements of one another, 
- Or very different  

• Shape motifs can flank sequence motifs 
• Shape motifs can differ between TFs with similar 
sequence motifs and/or the same protein fold.  
!

Fosl1 has a HelT motif Atf3 has a Roll motif

Shape motifs are complementary
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• Hierarchical or mixture model of TF binding with 
sequence and shape motifs 

- Decompose sequence motifs by shape types 
- Spectrum of recognition modes 

• Shape motifs in different contexts 
- Co-factors and complexes 
- Weak ChIP-seq peaks 

• Role of shape in ectopic binding of TFs when co-
factors are absent [Luna-Zurita et al. 2016] 
• Evolutionary modeling of DNA shape 

- Conservation of shape without sequence 
- Scoring SNPs for effects on shape motifs 

Ongoing Work
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