Reconstruction and Analysis of Transcriptional Regulatory Networks with TReNA

Seth A. Ament Institute for Systems Biology Seattle, Washington

Genes influence phenotypes through a network of networks Social Network Brain Connectivity Network Individual Neuronal Network Molecular Network DNA

Transcriptional Regulatory Network Analysis (TReNA)

Software Availability: https://github.com/PriceLab/TReNA

Transcriptional Regulatory Network Analysis (TReNA)

https://github.com/PriceLab/TReNA

Combining diverse annotations improves prediction of TF binding sites

TRUE/FALSE classes:

USFI DNase footprints with/without USFI ChIP-seq peaks

All USF1 footprints:

79% sensitivity 31% specificity

USFI footprints with modeled probability > 50%: 55% sensitivity 70% specificity

Combining TF binding sites and gene co-expression improves prediction of TFs' functional target genes

shRNA-microarray profiling of 25 TFs in lymohoblasts

Expression patterns of TFs accurately predict the expression patterns of thousands of genes in each tissue

Prediction of brain gene expression with fitTRN

Genome-scale TRN model for the human brain

Input data

- 4.6M predicted human brain TFBSs
- 2,756 gene expression profiles from the Allen Brain Atlas

Summary Statistics

- 745 TFs
- 11,093 target genes
- 201,218 interactions

TReNA reveals master regulator TFs and regulatory genetic variants in psychiatric disorders

POU3F2 (ng)

0 0.25

4

0 0.25 |

4

■ 1e–20