Reconstruction and Analysis of Transcriptional Regulatory Networks with TReNA

Seth A. Ament Institute for Systems Biology
Seattle, Washington

Genes influence phenotypes through a network of

 networks

Transcriptional Regulatory Network Analysis (TReNA)

Software Availability:
https://github.com/PriceLab/TReNA

Transcriptional Regulatory Network Analysis (TReNA)

Software Availability: https://github.com/PriceLab/TReNA

Combining diverse annotations improves prediction of TF binding sites

TRUE/FALSE classes:
USFI DNase footprints with/without USFI ChIP-seq peaks

All USFI footprints:
79\% sensitivity
31% specificity
USFI footprints with modeled probability > 50\%:
55\% sensitivity 70\% specificity

CombiningTF binding sites and gene co-expression improves prediction of TFs' functional target genes

shRNA-microarray profiling of 25 TFs in lymohoblasts

Expression patterns ofTFs accurately predict the expression patterns of thousands of genes in each tissue

Prediction of brain gene expression with fitTRN

Genome-scale TRN model for the human brain

Input data

- 4.6M predicted human brain TFBSs
- 2,756 gene expression profiles from the Allen Brain Atlas

Summary Statistics

- 745 TFs
- 11,093 target genes
- 201,218 interactions
(Ament et al., in prep.)

TReNA reveals master regulator TFs and regulatory genetic variants in psychiatric disorders

Master Regulator TFs			
	BD	SCZ	MDD
sox9			
SOX2			
FOXJ1			
FOXO1			
PRRX1			
FOXN2			
HMBOX1			
TEAD1			
POU3F4			
RUNX1			
NPAS3			
IRF9			
SREBE1			
POU3F2			
PFATA			
FOXO4			
FOXN3			
OTX1			
SMAD1			
p -value			
$\square 1 \mathrm{e}-2$			
$\square 1 \mathrm{e}-6$			
$\square 1 \mathrm{e}-20$			

rs 133842 I 9 allele and POU3F2 expression influence the activity of the VRK2 promoter

